we obtain an injective immersion $f: X \to \mathbb{R}^{2k+1}$ such that |f(x)| < 1 for all $x \in X$. Let $\rho: X \to \mathbb{R}$ be a proper function, and define a new injective immersion $F: X \to \mathbb{R}^{2k+2}$ by $F(x) = (f(x), \rho(x))$. Now drop back down to \mathbb{R}^{2k+1} as in the earlier theorem by composing F with an orthogonal projection $\pi: \mathbb{R}^{2k+2} \to H$, where H is the linear space perpendicular to a suitable unit vector, a in \mathbb{R}^{2k+2} .

Recall that the map $\pi \circ F \colon X \to H$ is still an injective immersion for almost every $a \in S^{2k+1}$, so we may pick an a that happens to be neither of the sphere's two poles. But now $\pi \circ F$ is easily seen to be proper. In fact, given any bound c, we claim that there exists another number d such that the set of points $x \in X$ where $|\pi \circ F(x)| \le c$ is contained in the set where $|\rho(x)| \le d$. As ρ is proper, the latter is a compact subset of X. Thus the claim implies that the preimage under $\pi \circ F$ of every closed ball in H is a compact subset of X, showing that $\pi \circ F$ is proper. If the claim is false, then there exists a sequence of points $\{x_i\}$ in X for which $|\pi \circ F(x_i)| < c$ but $\rho(x_i) \to \infty$. Remember that, by definition, for every $z \in \mathbb{R}^{2k+2}$ the vector $\pi(z)$ is the one point in H for which $z \to \pi(z)$ is a multiple of a. Thus $F(x_i) \to \pi \circ F(x_i)$ is a multiple of a for each a, and hence so is the vector

$$w_i = \frac{1}{\rho(x_i)} [F(x_i) - \pi \circ F(x_i)].$$

Consider what happens as $i \to \infty$.

$$\frac{F(x_t)}{\rho(x_t)} = \left(\frac{f(x_t)}{\rho(x_t)}, 1\right) \to (0, \dots, 0, 1),$$

because $|f(x_i)| < 1$ for all i. The quotient

$$\frac{\pi \circ F(x_i)}{\rho(x_i)}$$

has norm $\leq c/\rho(x_l)$, so it converges to zero. Thus $w_l \to (0, \ldots, 0, 1)$. But each w_l is a multiple of a; therefore so is the limit. We conclude that a must be either the north or south pole of S^{2k+1} , a contradiction. This proves the claim and the theorem. Q.E.D.

EXERCISES

- 1. Show that $T(\mathbf{R}^k) = \mathbf{R}^k \times \mathbf{R}^k$.
- 2. Let g be a smooth, everywhere-positive function on X. Check that the multiplication map $T(X) \to T(X)$, $(x, v) \to (x, g(x)v)$, is smooth.

- 3. Show that $T(X \times Y)$ is diffeomorphic to $T(X) \times T(Y)$.
- **4.** Show that the tangent bundle to S^1 is diffeomorphic to the cylinder $S^1 \times \mathbb{R}^1$.
- 5. Prove that the *projection* map $p: T(X) \to X$, p(x, v) = x, is a submersion.
- *6. A vector field \vec{v} on a manifold X in \mathbb{R}^N is a smooth map $\vec{v}: X \to \mathbb{R}^N$ such that $\vec{v}(x)$ is always tangent to X at x. Verify that the following definition (which does not explicitly mention the ambient \mathbb{R}^N) is equivalent: a vector field \vec{v} on X is a cross section of T(X)—that is, a smooth map $\vec{v}: X \to T(X)$ such that $p \circ \vec{v}$ equals the identity map of X. (p as in Exercise 5.)
- *7. A point $x \in X$ is a zero of the vector field \vec{v} if $\vec{v}(x) = 0$. Show that if k is odd, there exists a vector field \vec{v} on S^k having no zeros. [HINT: For k = 1, use $(x_1, x_2) \rightarrow (-x_2, x_1)$.] It is a rather deep topological fact that nonvanishing vector fields do not exist on the even spheres. We will see why in Chapter 3.
- Prove that if S^k has a nonvanishing vector field, then its antipodal map is homotopic to the identity (Compare Section 6, Exercise 7.) [HINT: Show that you may take $|\vec{v}(x)| = 1$ everywhere. Now rotate x to -x in the direction indicated by $\vec{v}(x)$.]
- 9. Let S(X) be the set of points $(x, v) \in T(X)$ with |v| = 1. Prove that S(X) is a 2k 1 dimensional submanifold of T(X); it is called the sphere bundle of X. [HINT: Consider the map $(x, v) \rightarrow |v|^2$.]
- 10. The Whitney Immersion Theorem. Prove that every k-dimensional manifold X may be immersed in \mathbb{R}^{2k} .
- 11. Show that if X is a compact k-dimensional manifold, then there exists a map $X \to \mathbb{R}^{2k-1}$ that is an immersion except at finitely many points of X. Do so by showing that if $f: X \to \mathbb{R}^{2k}$ is an immersion and a is a regular value for the map $F: T(X) \to \mathbb{R}^{2k}$, $F(x, v) = df_x(v)$, then $F^{-1}(a)$ is a finite set. Show that $\pi \circ f$ is an immersion except on $f^{-1}(a)$, where π is an orthogonal projection perpendicular to a. The exceptional points, in $f^{-1}(a)$, are called cross caps. [HINT: Show that there are only finitely many preimages of a under F in the compact set $\{(x,v):|v|\leq 1\}\subset T(X)$. For if (x_i,v_i) are infinitely many preimages, pick a subsequence so that $x_i \to x$, $v_i/|v_i| \to w$. Now show that $df_x(w) = 0$.]

- 12. Whitney showed† that for maps of two-manifolds into \mathbb{R}^3 , a typical cross cap looks like the map $(x, y) \rightarrow (x, xy, y^2)$. Check that this is an immersion except at the origin. What does its image look like?
- 13. An open cover $\{V_{\alpha}\}$ of a manifold X is *locally finite* if each point of X possesses a neighborhood that intersects only finitely many of the sets V_{α} . Show that any open cover $\{U_{\alpha}\}$ admits a locally finite refinement $\{V_{\alpha}\}$. [HINT: Partition of unity.]
- *14. Inverse Function Theorem Revisited. Use a partition-of-unity technique to prove a noncompact version of Exercise 10, Section 3. Suppose that the derivative of $f: X \to Y$ is an isomorphism whenever x lies in the submanifold $Z \subset X$, and assume that f maps Z diffeomorphically onto f(Z). Prove that f maps a neighborhood of Z diffeomorphically onto a neighborhood of f(Z). [Outline: Find local inverses $g_t: U_t \to X$, where $\{U_t\}$ is a locally finite collection of open subsets of Y covering f(Z). Define $W = \{y \in U_t: g_t(y) = g_f(y) \text{ whenever } y \in U_t \cap U_f\}$. The maps g_t "patch together" to define a smooth inverse $g: W \to X$. Finish by proving that W contains an open neighborhood of f(Z); this is where local finiteness is needed.]
- 15. The Smooth Urysohn Theorem. If A and B are disjoint, smooth, closed subsets of a manifold X, prove that there is a smooth function ϕ on X such that $0 \le \phi \le 1$ with $\phi = 0$ on A and $\phi = 1$ on B. [HINT: Partition of unity.]

[†]H. Whitney, "The General Type of Singularity of a Set of 2n-1 Functions of n Variables," Duke Math. Journal, 10 (1943), 161-172.