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we obtain an injective immersion f: X — R2¥*! such that |f(x)| <1 for
all x € X. Let p: X — R be a proper function, and define a new injective
immersion F: X — R2¥*2 by F(x) = (f(x), p(x)). Now drop back down to
R2*+1 a5in the earlier theorem by composing F with an orthogonal projection
n: R?*¥*2 — H, where H is the linear space perpendicular to a suitable unit
vector, a in R?¥+*2,

Recall that the map # o F: X — H is still an injective immersion for al-
most everya € S?¥*!, so we may pick an a that happens to be neither of the
sphere’s two poles. But now 7 o F is easily seen to be proper. In fact, given
any bound ¢, we claim that there exists another number d such that the set
of points x € X where |z o F(x)| < cis contained in the set where | p(x)| < d.
As p is proper, the latter is a compact subset of X. Thus the claim implies
that the preimage under z o F of every closed ball in H is a compact subset of
X, showing that z o F is proper. If the claim is false, then there exists a
sequence of points {x;} in X for which |z o F(x,;)] < ¢ but p(x;) — oo. Re-
member that, by definition, for every z € R?*¥*2 the vector n(z) is the one
point in H for which z — 7(z) is a multiple of a. Thus F(x;) — mo F(x,)is a
multiple of a for each i, and hence so is the vector

Consider what happens as i — oo.

F(x‘)_ f(x{), _
= (L) =0,

because | f(x;)| < 1 for all i. The quotient

has norm < ¢/p(x,), so it converges to zero. Thus w, — (0,...,0, I). But
each w, is a multiple of a; therefore so is the limit. We conclude that a must
be either the north or south pole of §2¥*!, a contradiction. This proves the
claim and the theorem. Q.E.D.

EXERCISES

2. Let g be a smooth, everywhere-positive function on X. Check that the
multiplication map T(X) — T(X), (x,v) — (x, g(x)v), is smooth.
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Embedding Manifolds in Euclidean Space S5

Show that T(X X Y) is diffeomorphic to T(X) X T(Y).

Show that the tangent bundle to S! is diffeomorphic to the cylinder
St X R,

Prove that the projection map p: T(X) — X, p(x,v) = x, is a submer-
sion.

A vector field v on a manifold X in R¥ is a smooth map v: X RV
such that B(x) is always tangent to X at x. Verify that the following
definition (which does not explicitly mention the ambient R¥) is equi-
valent: a vector field » on X is a cross section of T(X)—that is, a smooth
map v: X — T(X) such that po v equals the identity map of X. (p as
in Exercise 5.)

A point x € X is a zero of the vector field v if a(x) = 0. Show that if k
is odd, there exists a vector field v on S* having no zeros. [HINT: For
k =1, use (x,, x;) — (—x3, x;).] It is a rather deep topological fact
that nonvanishing vector fields do not exist on the even spheres. We will
see why in Chapter 3.

Prove that if S*¥ has a nonvanishing vector field, then its antipodal map
is homotopic to the identity (Compare Section 6, Exercise 7.) [HINT:
Show that you may take |7¢;(x)| = | everywhere. Now rotate x to —x in
the direction indicated by E;(x).]

Let S(X) be the set of points (x,v) € T(X) with |»| = 1. Prove that
S(X) is a 2k — 1 dimensional submanifold of T(X); it is called the
sphere bundle of X. [HINT: Consider the map (x, v) — |v|2]

The Whitney Immersion Theorem. Prove that every k-dimensional
manifold X may be immersed in R2*.

Show that if X is a compact k-dimensional manifold, then there exists a
map X — R2?*¥-! that is an immersion except at finitely many points of
X. Do so by showing that if /: X — R?¥ is an immersion and a is a reg-
ular value for the map F:T(X)— R2¥, F(x,v)=df,(v), then F~1(a)
is a finite set. Show that 7 o fis an immersion except on f ~!(a), where &
is an orthogonal projection perpendicular to a. The exceptional points,
in f~'(a), are called cross caps. [HINT: Show that there are only finitely
many preimages of a under F in the compact set {(x,v):|v|< 1} <
T(X). For if (x;, v,) are infinitely many preimages, pick a subsequence
so that x, — x, v,/|v,| — w. Now show that df (w) = 0.]
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12. Whitney showedt that for maps of two-manifolds into R3, a typical
cross cap looks like the map (x, y) — (x, xy, y?). Check that this is an
immersion except at the origin. What does its image look like ?

13. An open cover {V,} of a manifold X is locally finite if each point of X
possesses a neighborhood that intersects only finitely many of the sets
V,. Show that any open cover {U,} admits a locally finite refinement
{V,}. [HINT: Partition of unity.]

Inverse Function Theorem Revisited. Use a partition-of -unity technique
to prove a noncompact version of Exercise 10, Section 3. Suppose that
the derivative of f/: X — Y is an isomorphism whenever x lies in the
submanifold Z — X, and assume that f maps Z diffeomorphically onto
f(Z). Prove that f maps a neighborhood of Z diffeomorphically onto a
neighborhood of f(Z). [Outline: Find local inverses g,: U; — X, where
{U)} is a locally finite collection of open subsets of Y covering f(Z).
Define W = {y € U,: g(y) = g/y) whenever y € U, N U,}. The maps
g, “patch together” to define a smooth inverse g: W — X. Finish by
proving that W contains an open neighborhood of f(Z); this is where
local finiteness is needed.]

15. The Smooth Urysohn Theorem. If A and B are disjoint, smooth, closed
subsets of a manifold X, prove that there is a smooth function ¢ on X
such that 0 < ¢ < 1 with¢p =0on 4 and ¢ = | on B. [HINT: Partition
of unity.]
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